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This paper carries out the coexistence of chaotic attractors and stable equilibria in a generalized Sprott C system with only 

two stable equilibria. The discovery of this result is striking, because one typically would anticipate non-chaotic and even 

asymptotically converging behaviors. The simulation results are verified with a circuit implementation. 
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1. Introduction 

 

Since Lorenz found the first classical chaotic attractor 

in 1963 [1], chaos, as a very interesting nonlinear 

phenomenon, has been intensively studied in the last 

decades [2-6].
 
It is found to be either useful or has great 

potential in many fields, such as in engineering, biology 

and economics. 

For a generic three-dimensional smooth quadratic 

autonomous system, Sprott found by exhaustive computer 

searching about 19 simple chaotic systems with no more 

than three equilibria[1-3]. It is very important to note that 

some 3D autonomous chaotic systems have three 

particular fixed points: one saddle and two unstable 

saddle-foci(for example, Lorenz system[1],
 
Chen system 

[4],
 
Lü system [5],

 
the conjugate Lorenz-type systemet. 

et al
 
[6]). The other 3D chaotic system, such as the original  

Rölsser system [2], DLS [7] and Burke-Show system [8], 

have two unstable saddle-foci.  Yang and Chen found 

another 3D chaotic system with three fixed points: one 

saddle and two stable fixed points [9].
  

Recently, Yang, 

Wei and Chen [10] introduced and analyzed a new 3-D
 

chaotic system in a form very similar to the Lorenz, Chen, 

Lü and Yang-Chen system [9], but it has only two stable 

node-foci.
 
In 2011, Wang and Chen discovered a simple

 

three-dimensional autonomous quadratic system that has 

only one
 
stable equilibrium [11], revealing some new 

mysterious features of
 
chaos. That is to say, the analytic 

criterion that the system has at
 

least an unstable 

equilibrium for emergence of chaos is certainly
 

not 

necessary.
 

Moreover, many theoretical analysis and 

numerical simulation results about these systems were 

obtained [12-16].
 

It should be noted that one commonly used analytic 

criterion for generating and proving chaos in autonomous 

systems is based on the fundamental work of Sil'nikov [17, 

18] and its subsequent embellishment and slight extension 

[19].
 

However, Shi'linikov criteria is sufficient but 

certainly not necessary for emergence of chaos. Another 

form of complexity arises when two or more 

asymptotically stable equilibria and  other attracting sets 

coexist as the system parameters are being varied. The 

trajectories of the kinds of system selectively converges on 

either of the attracting sets depending on the initial state of 

the system. Another form of complexity arises when two 

or more asymptotically stable equilibria or attracting sets 

co-exist as the system parameters are being varied. There 

has been increasing interest in exploiting chaotic dynamics 

in engineering applications, where some attention has been 

focused on effectively creating chaos via simple physical 

systems, such as some electronic circuits [20-26]. 

In this paper, by using linear feedback, we introduce a 

generalized Sprott C system with six terms. When all of 

equilibria of generalized Sprott C system are stable, the 

system generates a double-scroll chaotic attractor, which 

can coexist with period attractors and stable equilibria.This 

is usually referred to as co-existing attractors
 
and when 

this occurs, the trajectories of the system selectively 

converges on either of the attracting sets depending on the 

initial state of the system. When co-existing attractors 

occur in a system, engineers and scientists are usually 

interested in obtaining the basins of attraction of the 

different attracting sets, defined as the set of initial points 

whose trajectories converge on the given attractor. 

Trajectories selectively converge on either of the attracting 

sets depending on the initial condition of the system. It 
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might render future prediction of the system’s steady state 

behavior almost impossible. 

 

 

2. The generalized Sprott C system dynamic  

  properties 

 

The generalized Sprott C system is described by the 

following equations: 

 

2

x = a(y )

y = cy xz

z = y ,

x

b



 



              (2.1) 

where a , b , c are real parameters. When 

0b  and 0a  , the model (2.1) has the following two 

fixed points: 

1( , , )E b b c , 
2( , , )E b b c   . 

In addition, the divergence of the system is a c   

which implies that the system is dissipative for 0a c  , 

since the volume of the system contracts according to the 

Liouville formula. It is easy to show that the system (2.1) 

is topologically equivalent to the original Sprott C system
 

when 0c   and 
2 0a b   [3]. In the parametric 

space {( , , ) | 0, 0, 0}a b c a b c   , the system (2.1) 

has two non-hyperbolic equilibria whose characteristic 

values both are: 1 a   , 2,3 2bi   .  

Generally, it is difficult to analytically specify 

parametric regions of a chaotic system. Therefore, certain 

numerical indices for identifying chaotic properties of 

system orbits are verified. According to the 

aforementioned analysis, there are three kinds of cases 

about the type of equilibria in system (2.1): (i) two 

saddle-foci. (ii) two stable node-foci. (iii)  two 

non-hyperbolic equilibria. Consequently, a question 

naturally arises: the generalized Sprott C system can 

generate chaotic attractors when 0c  ? 

To answer this question, now we investigate the 

influence of initial condition on the dynamics of system 

with the parameters space {( , , ) | 0, 0, 0}a b c a b c   . 

In particular, when we fix a 10,b 100,c 0.4    and 

change initial values slightly, dynamical behaviors of the 

system may produce large variations in the long term. 

Besides the two stable equilibrium points, chaotic 

attractors of system (2.1) also are obtained, which implies 

that chaos coexists with period attractors and the two 

stable fixed points: 

(a) A chaotic attractor with initial values (11.2, 

4.81.-0.2) is obtained. The Lyapunov exponents of the 

system (2.1) are found to be 1 21.2804,   0L L   

and 3 11.6805L   ; 

(b) For initial values (11.2, 4.85.-0.2), trajectories 

converge to stable equilibrium 1E . The Lyapunov 

exponents of the system (2.1) are found to be 

1 20.1272, 0.1308L L     and 3 10.1421L   ; 

(c) A chaotic attractor with initial values (11, 

4.85.-0.2) is obtained again. The Lyapunov exponents of 

the system (2.1) are found to be 

1 21.2714, 0.0002L L    and 3 11.6713L   ; 

(d) For initial values (11, 4.88, -0.2), trajectories 

converge to stable equilibrium 1E . The Lyapunov 

exponents of the system (2.1) are found to be 

1 20.1233, 0.1301L L     and 3 10.1466L   . 

Notice that the behavior of system (2.1) is very 

sensitive to the parameter c  and initial values. It can be 

seen from the above results that a small change in the 

initial condition of the system (2.1) will probably create 

totally different dynamic behavior. For different initial 

conditions, trajectory of system (2.1) with only stable 

equilibria can converges to two types of attractors (chaos 

or stable equilibrium). These attractors are shown in Fig. 1. 

From this viewpoint, one is confident that there are still 

abundant complex properties and phenomena to be further 

investigated, towards some unified theories on the 

celebrated Lorenz system and other chaotic systems. 

 

 
 

 
 

Fig. 1. Coexistence of chaotic attractors and stable 

equilibrium of the system (2.1) for the case 

a 10,b 100,c 0.4   ： (a)  initial conditions 

(11.2, 4.85.-0.2) (in black) and (11.2, 4.85.-0.2) (in red) ; 

(b) initial conditions  (11, 4.85.-0.2) (in black) and (11,  

                 4.88, -0.2) (in red). 
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3. Circuit realization of the new attractor 

 

In fact, the strong random property is also 

demonstrated by the following circuit implementation [3].
 

When system (2.1) has only stable equilibria, the simple 

electronic circuit is designed that can be used to study 

chaotic phenomena. The circuit employs simple electronic 

elements such as resistors, and operational amplifiers, and 

is easy to construct. Fig. 2 shows the circuit schematic for 

implementing the new chaotic system Eq. (2.1). There are 

3 capacitors, 8 resistors, 4 opamps and 2 multipliers in the 

circuit. Orcad-Pspice simulation of the new chaotic system 

is realized for parameters a = 10; b = 10, and c = 1.25 

(R11=320 K), and initial conditions x0=0.29, y0=0.19, 

z0=-0.04. TL081 opamps, and the Analog Devices 

AD633/AD multipliers are used and R1=40K, R2=40K, 

R5=40K, R6 = 400K, R7=40K, R9= R10=100K, R11= 320K, 

C1 = C2 = C3 = 1nF, VN = -15V, VP =15V are chosen. All 

of the electronic components are easily available. 

Acceptable inputs to the AD633 multiplier IC are –10 to 

+10 V. The output voltage is the product of the inputs 

divided by 10 V. Orcad-PSpice simulations of the new 

chaotic system are also attained in Fig. 3, 4, and 5 (xy, xz, 

yz attractors respectively). In order to practical realization 

of the new chaotic circuit, a microcontroller based circuit 

have to be designed to applying the initial condition 

voltages to the capacitors. The real oscilloscope outputs 

and the initial condition applying circuit will be present in 

the next publication. 
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Fig. 2. The electronic circuit schematic of the new chaotic system. 
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Fig. 3. Pspice simulation result of the new chaotic system’s 

electronic oscillator, (xy strange attractor). 
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Fig. 4. Pspice simulation result of the new chaotic system’s 

electronic oscillator, (xz strange attractor). 
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Fig. 5. Pspice simulation result of the new chaotic system’s 

electronic oscillator, (yz strange attractor). 
 
 

4. Conclusion 
 

In summary, we have given a brief review of the 

chaotic behavior of the generalized Sprott C system and 

illustrated that the system may possess topologically 

different chaotic attractors. It is to indicate that some 

chaotic attractors may appear quite differently from the 

other kinds of equilibria, from a topological point of view. 

The co-existence of chaotic attractors and stable equilibria 

is very desirable for some engineering applications, as 

electronic circuit shows. 

Acknowledgements 

 

Supported by the National Basic Research Program of 

China (973 Program), No. 2011CB710602, 604, 605, the 

Special Fund for Basic Scientific Research of Central 

Colleges, South-Central University for Nationalities (No. 

CZQ11034), and the Sakarya University Scientific 

Research Projects Commission Presidency (No. 

2010-01-00-002). 

 

References  

 

 [1] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963). 

 [2] O. E. Rössler, Phys. Lett. A 57, 397 (1976). 

 [3] J. C. Sprott, Phys. Rev. E 50, 647 (1994). 

 [4] G.. R. Chen, T. Ueta, Internat. J. Bifur. Chaos 9, 1465  

    (1999). 

 [5] J. H. Lü, G.. R. Chen, Internat. J. Bifur. Chaos 12, 659  

    (2002).  

 [6] Q. G. Yang, G. R. Chen, K. F. Huang, Internat. J.  

    Bifur. Chaos 17, 3929 (2007). 

 [7] G. van der Schrier, L. R. M. Maas, Physica D 141, 19  

    (2000).  

 [8] R. Shaw, Z. Naturforsch. 36A, 80 (1981). 

 [9] Q. G. Yang, G. R. Chen, J. Bifur. Chaos 18, 1393  

    (2008). 

[10] Q. G. Yang, Z. C. Wei, G. R. Chen, J. Bifur. Chaos 20,  

    1061 (2010).  
[11] X. Wang, G. R. Chen, Commun. Nonlinear Sci.  
    Numer. Simulat. 17, 1264 (2012). 
[12] F. S. Dias, L. F. Mello, J. G. Zhang, Nonlinear Anal.:  
    Real World Appl. 11, 3491 (2010). 
[13] T. S. Zhou, G. R. Chen, Y. Tang, Internat. J. Bifur.  
    Chaos 13, 2561 (2003).  
[14] Q. G. Yang, G.. R. Chen, T. S. Zhou, Internat. J. Bifur.  
    Chaos 16, 2855 (2006).  
[15] M. Messias, J. Phys. A: Math. Theor. 42, 115101  
    (2009).  
[16] Z. C. Wei, Comput. Math. Appl. 63, 728 (2012). 
[17] L. P. Sil'nikov, Sov. Math. Docklady 6, 163 (1965). 
[18] L. P. Sil'nikov, Math. U.S.S.R.-Shornik 10, 91 (1970). 
[19] C. P. Silva, IEEE Trans. Circuits Syst. I 40, 657  
    (1993). 
[20] İ. Pehlivan, Y. Uyaroglu, Turkish Journal of Electrical  
    Eng. Comput. Sci. 18, 171 (2010).  
[21] İ. Pehlivan, Y. Uyaroğlu, M. Yoğun, Scientific  
    Research and Essays 5, 2210 (2010). 
[22] İ. Pehlivan, Y. Uyaroğlu, Journal of Applied Sciences 
    7, 232 (2007). 
[23] İ. Pehlivan, Y. Uyaroğlu, IET Communications  

1, 1015 (2007). 
[24] S. Codeanu, A. Marcu, Optoelectron. Adv. Mater. – 

Rapid Commun. 1, 267 (2007). 

[25] H. T. Yau, C. C. Wang, J. Optoelectron. Adv. Mater. 

11, 1178 (2009). 

[26] Y. Uyaroglu, İ. Pehlivan, Computers and Electrical  

Engineering 36, 1093 (2010). 

 

_________________________ 
*Corresponding author: weizhouchao@yahoo.cn  

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235693%232010%23999639993%232518742%23FLA%23&_cdi=5693&_pubType=J&view=c&_auth=y&_acct=C000041578&_version=1&_urlVersion=0&_userid=746115&md5=abc661d4fee1c5532690f9028025486f
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235693%232010%23999639993%232518742%23FLA%23&_cdi=5693&_pubType=J&view=c&_auth=y&_acct=C000041578&_version=1&_urlVersion=0&_userid=746115&md5=abc661d4fee1c5532690f9028025486f

